31 research outputs found

    New parameter for dynamic characterization of PET film surface topography

    Get PDF
    It is well-known that handling and winding flexible media involve aerodynamic phenomena which are crucial for the process. Among those parameters which govern the final thickness value of the air layers separating the film layers in a roll of film (for example PET), surface roughness plays an important role. In order to characterize the surface topography of such materials, in a dynamic way, an original experimental set-up was built. It has been described elsewhere, and only its basic features are recalled here. It consists in a polished glass disc with a circular slit connected to a vacuum pump. Having displayed a sample of PET film onto the glass plate, sub-ambient pressure is applied. The air layer which initially separates the film from the plate is partially reduced due to air aspiration: a circular front starts from the slit and propagates towards the center. For prescribed values of the film thickness, the total propagation time depends on sub-ambient pressure and slit diameter (i.e. squeezing surface) through relationships which involve a single parameter characteristic of film roughness.Here the same experimental set up is used to carry out further investigations dealing with the kinetics of both air layer thinning and front propagation. Using a monochromatic light to insulate the film from above, Newton rings are generated allowing the air gap thickness variation to be measured by means of a CCD camera associated with image processing. The main experimental result is that the air layer at the center decreases linearly versus time, the slope being characteristic of the film surface roughness. A simple theoretical model based on the concept of " equivalent smooth surfaces " is developed in order to predict the circular front propagation. Excellent agreement is observed with the experimental data, namely the front propagation kinetics. These results are extrapolated to the configuration of winding, leading to significant improvement of the existing model for lateral evacuation of the air layers confined between the film layers in a roll of film

    Macroscopic effects of surface roughness in confined air-flow

    Get PDF
    One challenge when processing flexible media such as plastic films is to obtain rolls without any aspect defect : if one considers that a "defect" (i.e. wrinkling or buckling) is due to the fact that the stress generated within the roll is greater than some "plasticity yield", then it is crucial to predict the internal stress state.Several process parameters must be carefully mastered (winding tension, velocity, etc.) as well as the material pertinent properties. One key issue is to optimize the surface topography of the flexible medium so that to improve the quality of the wound roll.We propose here new parameters which describe the surface roughness of plastic films fairly well. The measurements were carried out by using a 3D roughness measurement device.A mathematical model based on homogenization techniques is proposed, where the heights of the roughness peaks, their diameter and their spatial distribution are the governing parameters.Sampling at different levels is carried out by expressing the percentage of peaks which exceed some given threshold value.For each tested film, the threshold value will be the only adjustable parameter.Introducing these parameters into the mathematical model which predicts the evolution of the squeezed air layer and comparing to the experimental data, the following results are obtained :- It is possible to adjust one single parameter so that to obtain a very good agreement between the experimental data and the theoretical results.- The smoother the film, the more important the highest peaks are in terms of air leakage

    Winding plastic films: Experimental study of squeeze film flow between one smooth surface and one "rough" surface

    Get PDF
    The present paper is concerned with experiments which consist in squeezing an air layer between a rigid, smooth surface and a flexible, rough one.The experimental rig is composed of a smooth glass plate, with a circular slit allowing air aspiration to be done around it. A thin (few microns thick) plastic film is laid on the glass plate and air separating the glass and the film surfaces is removed by means of a vacuum pump. A circular front appears on the film surface, and moves towards the centre, as the film is pressed onto the glass plate.A monochromatic lamp is used to insulate the surfaces from above and Newton rings can be observed as the front moves. The duration of this operation is measured by a chronometer.Typically, the measured time depends on the plate diameter, the sub-ambient pressure exerted, the film flexural rigidity (or its thickness) and its surface roughness.A set of experiments have been carried out for several values of the sub-ambient pressure and of the slit diameter.The results are well reproducible: for a given sample, the characteristic time is proportional to the squared value of the diameter. The dependence on the sub-ambient pressure is more complicated. A simple model using a semi-empirical formulation is suggested on the basis of the experimental data

    On-line control of tension in web winding systems based on wound roll internal stress computation

    Get PDF
    One of the key challenges in the processing of flexible media such as plastic films is to obtain rolls without any aspect defect: if one considers that a "defect" (i.e. wrinkling or buckling) is due to the fact that the stress generated within the roll is greater than some "plasticity threshold", then it is crucial to predict the internal stress. Several process parameters must be carefully mastered, among which the winding tension is very important. Offline optimization of the tension can a priori guarantee the production of perfect rolls, with respect to the internal stress. Nevertheless, the industrial control systems never generate perfect follow-up of the tension reference value, because the tension which is actually imposed (i.e. measured) exhibits oscillations due to the imperfections of the winding system, including geometrical irregularities of the rolls. The fluctuations about the tension nominal value induce variations in the stress within the roll as compared to the value which would result from an ideal control. As a consequence, it is judicious to change the tension reference value during the winding process, according to some criterion defined from the stress computed within the roll, and then to apply this new "up-dated" reference to the forthcoming web layers. This new way of online tension control requires new concepts such as "robust multivariable control", because distributed control may not work as well.The first step consists in computing the internal stress generated within a roll of a wound web (for instance plastic film). For that purpose, a modified non-linear model is developed in the spirit of Hakiel's. The web's winding process can be considered as a continuous accretion process, in the sense that the stress components at a given point are continuously modified by the upper superimposed layers. In addition, the residual air films which separate the web layers are taken into account in an indirect way through the radial Young's modulus of the roll which is a non-linear (polynomial) function of the compressive stress component. Several illustrative examples are presented and commented. Then, having prescribed an optimization criterion for the winding tension, an optimization algorithm based on the simplex principle is described. Finally, a new concept of online tension control, based on prediction-correction is proposed. Dividing the roll radius into several segments, the tension reference is computed and corrected for each range of roll radius values, by using the predictive model for the stress within the roll. The adjusted tension is reactualized step by step, following the optimization principle as described above and it will be considered as the new tension reference value for the coming layers. A comparison between offline and online tension controls clearly shows the improvement given by the new optimization technique (online)

    Control and online tension reference optimization in winding systems: Application to an identified three-motors simulator

    Get PDF
    It is well known that the tension reference value, which a priori guarantees a good quality roll, is based on the stress generated within the roll. However, due to the imperfections of the winding systems and to the limited performances of the disturbances rejection controllers, a control with fixed reference never generates perfect follow-up of the tension. A solution would consist in adjusting the tension reference online, according to real measurements.In a previous paper, the criterion for tension adjustment was the tangential stress. A method for online control based on prediction-correction using the simplex algorithm was presented. This method was tested numerically.In the present paper, we propose to generalize the criterion of tension reference optimization by considering both the tangential and the radial stress within the roll during winding. The same optimization algorithm is used, taking into account the dynamic tension model. Moreover, a dynamic gauge is now introduced, so that it can vary during the winding process. It generally represents the limits of elastic deformations of the web.The new optimization algorithm for the on-line reference tension calculation has been validated on a dynamic non-linear winding model. This complete model used for simulations was validated on a three-motor setup using brushless motors. The setup is with PI controllers, where the web velocity is imposed by master traction motor and the tension is controlled by unwinding and winding motors.In this approach, a new tension-prediction algorithm using a linear parameter varying (LPV) model is used. The influence of the tension prediction algorithm is also analyzed.Several illustrative examples will be presented and the improvement as compared to an offline control will be commented

    Gauge optimization of the reference tension in winding systems using wound internal stresses calculation

    Get PDF
    In winding process, the quality of the roll is directly connected to its stress state. The winding tension is the most significant parameter which plays an important role in the stresses generated within a roll, during winding. If the stresses exceed a critical value, defects can appear in the roll and make the web non usable.This work concerns the estimation and optimization of the maximal dispersion of the reference tension, so that the tangential and radial stresses values remain in a gauge. It aims to find automatically the maximum and minimum limits for the reference tension, so that all curves ranging between these two limits or thresholds, generate radial and tangential stresses, theirs selves included in a gauge fixed in advance. The results lead to a practical gauge optimization of the reference tension for industrial applications

    A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 2. Life Prediction by Mesoscale Modeling for Composite Structures

    No full text
    ΠžΠΏΠΈΡΠ°Π½Π½Ρ‹ΠΉ Π² сообщСнии 1 ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Ρ€Π°Π·Π²ΠΈΡ‚ Π½Π° случай Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π»Π°ΠΌΠΈΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° Π’300/914, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚ΠΎΠ³ΠΎ статичСскому двухосному Ρ€Π°ΡΡ‚ΡΠΆΠ΅Π½ΠΈΡŽ ΠΈ сдвигу. РСшСниС Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ осущСствляСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ с эффСктом Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ скорости ΠΈΡ… накоплСния. Π Π°Π·ΠΌΠ΅Ρ€ Π·ΠΎΠ½Ρ‹ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ поврСТдСния Π² плоскости слоСв Π»Π°ΠΌΠΈΠ½Π°Ρ‚Π° зависит ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ характСристики ΠΌΠΎΠ΄Π΅Π»ΠΈ, связанной с Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ поврСТдСния ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ нагруТСния. Показано, Ρ‡Ρ‚ΠΎ совмСстноС использованиС ΠΌΠ΅Π·ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€ Π·ΠΎΠ½Ρ‹ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ поврСТдСния ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ врСмя Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ.Описаний Π² ΠΏΠΎΠ²Ρ–Π΄ΠΎΠΌΠ»Π΅Π½Π½Ρ– 1 ΠΎΠ΄Π½ΠΎΠ²ΠΈΠΌΡ–Ρ€Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Ρ€ΠΎΠ·Π²ΠΈΠ½ΡƒΡ‚ΠΎ Π½Π° Π²ΠΈΠΏΠ°Π΄ΠΎΠΊ Π΄Π²ΠΎΠ²ΠΈΠΌΡ–Ρ€Π½ΠΎΠ³ΠΎ Π»Π°ΠΌΡ–Π½Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° T300/914, Ρ‰ΠΎ Π·Π°Π·Π½Π°Ρ” статичного двовісного розтягання Ρ– зсуву. Розв’язок Π΄Π°Π½ΠΎΡ— Π·Π°Π΄Π°Ρ‡Ρ– Π²ΠΈΠΊΠΎΠ½ΡƒΡ”Ρ‚ΡŒΡΡ Π·Π° допомогою Π΅Π²ΠΎΠ»ΡŽΡ†Ρ–ΠΉΠ½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π· Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠΌ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ пошкодТСнь Π·Π° ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½ΠΎΡ— ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Ρ—Ρ… накопичСння. Π ΠΎΠ·ΠΌΡ–Ρ€ Π·ΠΎΠ½ΠΈ Π»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— пошкодТСння Ρƒ ΠΏΠ»ΠΎΡ‰ΠΈΠ½Ρ– ΡˆΠ°Ρ€Ρ–Π² Π»Π°ΠΌΡ–Π½Π°Ρ‚Π° Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ часової характСристики ΠΌΠΎΠ΄Π΅Π»Ρ–, яка пов’язана Ρ–Π· Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΎΡŽ пошкодТСння Ρ– ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŽ навантаТСння. Показано, Ρ‰ΠΎ ΡΠΏΡ–Π»ΡŒΠ½Π΅ використання ΠΌΠ΅Π·ΠΎΠΌΠΎΠ΄Π΅Π»Ρ– ΠΉ Π΅Π²ΠΎΠ»ΡŽΡ†Ρ–ΠΉΠ½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ пошкодТСнь дозволяє ΠΎΡ†Ρ–Π½ΠΈΡ‚ΠΈ Ρ€ΠΎΠ·ΠΌΡ–Ρ€ Π·ΠΎΠ½ΠΈ Π»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— пошкодТСнь Ρ– Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΡ†Ρ–Π½ΠΈΡ‚ΠΈ час руйнування

    A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay

    No full text
    ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ Π² Π±Π°Π»ΠΊΠ΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π»Π°ΠΌΠΈΠ½Π°Ρ‚Π° T300/914 для модСлирования развития ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ эффСкта Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ для ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ случая, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎΠ± ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ появлСнии Π·ΠΎΠ½Ρ‹ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎ всСй конструкции. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ базируСтся Π½Π° ΠΌΠ΅Π·ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° расчСтныС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· ΠΏΠΎΡ‚Π΅Ρ€ΠΈ устойчивости ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΏΡ€ΠΈ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π΅Π³ΠΎ ТСсткости.Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΠΉ Π½Π΅ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– Ρ– Π»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— пошкодТСнь Ρƒ Π±Π°Π»Ρ†Ρ– Π· ΠΎΠ΄Π½ΠΎΡ€Ρ–Π΄Π½ΠΎΠ³ΠΎ Π»Π°ΠΌΡ–Π½Π°Ρ‚Π° Π’300/914 для модСлювання Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ пошкодТСнь Π· урахуванням Π΅Ρ„Π΅ΠΊΡ‚Ρƒ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ, Ρ‰ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– для ΠΎΠ΄Π½ΠΎΠ²ΠΈΠΌΡ–Ρ€Π½ΠΎΠ³ΠΎ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ, ΡΠ²Ρ–Π΄Ρ‡Π°Ρ‚ΡŒ ΠΏΡ€ΠΎ Ρ‚Π΅, Ρ‰ΠΎ Π·ΠΎΠ½Π° руйнування ΠΏΠΎ всій конструкції Π²ΠΈΠ½ΠΈΠΊΠ°Ρ” одночасно. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ розв’язок, Ρ‰ΠΎ Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° ΠΌΠ΅Π·ΠΎΠΌΠΎΠ΄Π΅Π»ΡŽΠ²Π°Π½Π½Ρ– ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π². ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π·Π° допомогою Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρƒ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²Ρ– Π΄Π°Π½Ρ– Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Π²ΠΈΠΊΠΎΠ½Π°Ρ‚ΠΈ Ρ‚ΠΎΡ‡Π½ΠΈΠΉ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· Π²Ρ‚Ρ€Π°Ρ‚ΠΈ стійкості Π·Ρ€Π°Π·ΠΊΠ° ΠΏΡ€ΠΈ ΠΏΠΎΠ³Ρ–Ρ€ΡˆΠ°Π½Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΠΉΠΎΠ³ΠΎ Торсткості

    Prediction by a Genetic Algorithm of the Fiber-Matrix Interface Damage for Composite Material. Part 2. Study of Shear Damage in Graphite/Epoxv Nanocomposites

    No full text
    The objective in this paper is to apply the same genetic model as applied in Part 1 to optimizing the shear damage to the fiber–matrix interface of nanocomposite material graphite epoxy. The results show good agreement between the numerical simulation and the actual behavior of the material chosen composite and nanocomposites, and these results are similar to results obtained by processing techniques expanded graphite reinforced polymer nanocomposites made by Asma Yasmine. These results were confirmed by calculating the rate of damage with a genetic simulation.Описанная Π² сообщСнии 1 гСнСтичСская модСль ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ поврСТдСния Π² плоскости ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… сдвиговых напряТСний Π½Π° стыкС Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π² Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΌ Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎ-эпоксидном ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π° Ρ…ΠΎΡ€ΠΎΡˆΠ°Ρ коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ числСнными расчСтами ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ для ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° ΠΈ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² Π½Π° основС Π³Ρ€Π°Ρ„ΠΈΡ‚Π°, усилСнного Π½Π°Π½ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚Π°ΠΊΠΆΠ΅ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° основании расчСтной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Ясмина. Π’ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдованиях планируСтся ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния тСрмичСских напряТСний Π½Π° ΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ.Описана Π² ΠΏΠΎΠ²Ρ–Π΄ΠΎΠΌΠ»Π΅Π½Π½Ρ– 1 Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½Π° модСль Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ для ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— пошкодТСння Π² ΠΏΠ»ΠΎΡ‰ΠΈΠ½Ρ– ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… зсувних Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Π½Π° стику Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Ρ– ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Π² Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΌΡƒ Π³Ρ€Π°Ρ„Ρ–Ρ‚ΠΎ-Споксидному ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ Ρ…ΠΎΡ€ΠΎΡˆΡƒ ΠΊΠΎΡ€Π΅Π»ΡΡ†Ρ–ΡŽ ΠΌΡ–ΠΆ числовими Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠ°ΠΌΠΈ ΠΉ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΠΌΠΈ Π΄Π°Π½ΠΈΠΌΠΈ для ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° Ρ‚Π° Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ Ρ–Π² Π½Π° основі Π³Ρ€Π°Ρ„Ρ–Ρ‚Ρƒ, підсилСного Π½Π°Π½ΠΎΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π°ΠΌΠΈ. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Π΄Π°Π½Ρ– Ρ‚Π°ΠΊΠΎΠΆ Π΄ΠΎΠ±Ρ€Π΅ ΡƒΠ·Π³ΠΎΠ΄ΠΆΡƒΡŽΡ‚ΡŒΡΡ Π· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, Ρ‰ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π½Π° основі Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Ясміна. Π£ ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… дослідТСннях ΠΏΠ»Π°Π½ΡƒΡ”Ρ‚ΡŒΡΡ вивчСння Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΈΡ… Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Π½Π° ΠΏΠΎΠ΄Ρ–Π±Π½Ρƒ ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–ΡŽ

    Study of the Effect of Water Intake by the Matrix on the Optimization of the Fiber Matrix Interface Damage for a Composite Material by Genetic Algorithms

    No full text
    The objective of this paper is study the influence of the matrix swelling due to water on the damage of the fiber matrix interface of a composite material. The results obtained by a genetic approach based on Weibull probabilistic model, show good agreement between the simulation and the actual behavior of the two materials T300/914 and PEEK/APC2. Also the absorption of water by the matrix increases significantly the interface damage.ИсслСдовано влияниС набухания смолы (ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹) вслСдствиС поглощСния Π²ΠΎΠ΄Ρ‹ Π½Π° ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ повСрхности Ρ€Π°Π·Π΄Π΅Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΎΠΌ ΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гСнСтичСского Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π½Π° основС вСроятностной ΠΌΠΎΠ΄Π΅Π»ΠΈ Π’Π΅ΠΉΠ±ΡƒΠ»Π»Π°, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠ΅Π΅ соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ процСссом модСлирования ΠΈ фактичСским ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² (T300/914 ΠΈ PEEK/APC2). Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, абсорбция Π²ΠΎΠ΄Ρ‹ смолой (ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ) Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ повСрхности Ρ€Π°Π·Π΄Π΅Π»Π°.ДослідТСно Π²ΠΏΠ»ΠΈΠ² набухання смоли (ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ–) внаслідок поглинання Π²ΠΎΠ΄ΠΈ Π½Π° пошкодТСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΏΠΎΠ΄Ρ–Π»Ρƒ ΠΌΡ–ΠΆ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΎΠΌ Ρ– ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΡŽ Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΌΡƒ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ, Ρ‰ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π·Π° допомогою Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ Π½Π° основі імовірнісної ΠΌΠΎΠ΄Π΅Π»Ρ– Π’Π΅ΠΉΠ±ΡƒΠ»Π»Π°, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΡƒ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½Ρ–ΡΡ‚ΡŒ ΠΌΡ–ΠΆ процСсом модСлювання Ρ– Ρ„Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΡŽ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΎΡŽ Π΄Π²ΠΎΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² (Π’300/914 Ρ– PEEK/APC2). Π‘Ρ–Π»ΡŒΡˆ Ρ‚ΠΎΠ³ΠΎ, абсорбція Π²ΠΎΠ΄ΠΈ смолою (ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΡŽ) Π·Π½Π°Ρ‡Π½ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ” ΠΏΠΎΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Ρ–ΡΡ‚ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΏΠΎΠ΄Ρ–Π»Ρƒ
    corecore